Urbos.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль упругости бетона в30

Модуль упругости бетона

Данное понятие известно в основном специалистам. Для «самодеятельного» строителя, частного застройщика это словосочетание мало о чем говорит. Но долговечность той или иной постройки напрямую зависит от него.

Сам бетон является твердым материалом. И, тем не менее, под влиянием различных внешних сил он частично деформируется. Именно поэтому различают 2 показателя его прочности – на растяжение и на сжатие, хотя ориентируются в большей степени на последний. Следовательно, и модули упругости также должны быть соответственно рассчитаны на эти разносторонние воздействия.

Но на практике они принимаются равными и свидетельствуют о способности бетона временно деформироваться под воздействием повышенных нагрузок, при этом не подвергаясь необратимым изменениям – разрушению структуры, появлению трещин, сколов и тому подобное. Это особенно важно знать, когда конструкция подвергается различным прогибам (например, ж/б сооружения арочного типа, перекрытия). В отличие от многих других строительных материалов бетон под влиянием нагрузки (в известных пределах) действует как пружина.

Рассматриваемый показатель определяется экспериментальным путем на основе испытаний образцов материалов. Обозначается символом «E» и имеет второе название – «модуль Юнга». Различают начальный и приведенный модуль упругости (Eb и Eb1 соответственно). Для рядового пользователя все эти вычисления и используемые при этом формулы практического значения не имеют, так как во всех нюансах сможет разобраться только профильный специалист.

Нужно лишь знать, что оказывает влияние на данную характеристику материала, а также о существовании таблиц, которыми при необходимости можно воспользоваться.

От чего зависит модуль упругости

1. Непосредственное влияние оказывают характеристики наполнителя, причем эта зависимость – практически прямолинейная (если отобразить ее графически). Для легких бетонов значение модуля ниже, чем тот же показатель у «тяжелых» аналогов с крупными гранулами (щебня, гравия).

2. Класс бетона. Для определения существует специальная таблица. Частный застройщик на практике использует ограниченный ассортимент подобной продукции, поэтому нет смысла приводить ее в полном виде. Вот некоторые данные по прочности и модулю, из которых видно, что они имеют прямо пропорциональную зависимость, которая не изменяется при температурах до 230 0С. Следовательно, практически никогда.

  • В10 соответствует 19;
  • В 15 – 24;
  • В20 – 27,5;
  • В25 – 30;
  • В30 – 32,5.

Это позволяет «управлять» таким свойством материала, как упругость, причем для одной и той же марки продукции. Такая характеристика принимается во внимание в зависимости от того, какой элемент конструкции будет монтироваться. Например, слабо или сильно нагруженный, с какой периодичностью и длительностью будет действовать дополнительный вес.

3. Возраст бетона. Наблюдается тенденция увеличение численного показателя модуля упругости с течением времени. Поэтому при определении значения в конкретный период пользуются специальными таблицами, где отражены начальные показатели, которые умножаются на поправочные коэффициенты.

4. Технология обработки материалов. Есть разница, как отвердевал бетон – естественным путем, при термической обработке без использования закрытых камер или «прошел» через автоклав.

5. Продолжительность воздействия нагрузки. Для определения данной величины начальный модуль упругости (взятый из таблицы), умножается на соответствующий коэффициент. Он равен 0,85 для бетонов мелкозернистых, легких (если заполнитель мелкий) и тяжелых. Для легких (с пористым заполнителем) и поризованных бетонов коэффициент равняется 0,7.

Перед тем, как рассмотреть иные факторы, влияющие на рассматриваемую характеристику, стоит остановиться на таком показателе, как ползучесть бетона. От нее зависит степень деформации материала. Дело в том, что при кратковременном воздействии (причем в определенных пределах) после снятия нагрузки материал принимает первоначальную форму.

Если воздействие не прекращается, то речь идет уже о пластичной деформации, которая, как правило, имеет необратимый характер. Не стоит вдаваться во все нюансы, так как порой разделить оба вида деформации крайне сложно. Достаточно указать, что пластичная (то есть дальнейшее изменение формы) вызывается «ползучестью» бетона. Она учитывается при длительном воздействии. Коэффициент ползучести обозначается символом «φb,cr»

6. Влажность воздуха. Существует зависимость между ней и φb,cr. Это также определяется по таблицам. Кроме того, учитываются и такие факторы, как температура и радиация (интенсивность излучения).

7. Наличие армирующего каркаса. Понятно, что металл деформируется под нагрузкой не в такой степени, как бетон.

Для тех читателей, которые захотят более глубоко вникнуть в этот вопрос, укажем Государственный Стандарт № 24452 от 1980 года, в котором описаны, в частности, и методы определения данной характеристики бетонов.

Что такое модуль упругости бетона?

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;

Модуль упругости бетона разных классов

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога. Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Читать еще:  Подогрев бетона сварочным аппаратом

Модуль упругости бетона – таблица

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Диаграмма модуля упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства.
Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.

Различные технологии изготовления бетона

Аналогичная тенденция прослеживается для других классов бетона, включая популярный b25 бетон.

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Заключение

Понимание физической сущности параметра упругости бетонного материала позволит правильно выбрать класс бетона для обеспечения необходимой прочности и долговечности строительных конструкций. Желая подробно ознакомиться с методикой расчета бетонных конструкций, изучите внимательно Свод правил 52 101 2003, положения которого распространяются на строительные конструкции из бетона и железобетона.

Определение модуля упругости бетона

Определение упругости и единицы измерения

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения.

Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10 -3 ) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками

Классы по прочности на сжатие

Тепловая обработка при атмосферном давлении

Естественное твердение, А-группа

Тепловая обработка при атмосферном давлении

Естественное твердение, Б-группа

Автоклавное твердение, В-группа

Легкие и поризованные

Марка средней плотности, D

Ячеистые автоклавного твердения

Марка средней плотности, D

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Модуль (коэффициент) упругости бетона

Главной характеристикой, определяющей прочность бетона, является коэффициент его упругости. Он важен для профессиональных проектировщиков, которые проводят расчеты нагрузочных способностей бетонных конструкций.

Железобетонные строительные конструкции постоянно испытывают большие нагрузки. Это необходимо учитывать еще на этапе их планирования. Поэтому технологами была разработана система придания бетону способности упруго деформироваться под воздействием таких факторов, как давление и сила. Величина, характеризующая данный показатель, получила название модуль упругости бетона.

Модуль упругости бетона — это коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной упругомгновенной деформацией при σ1=0,3Rпр при осевом сжатии образцов. (ГОСТ 24452-80 Бетоны, Rпр — призменная прочность бетона)

Значение начального модуля упругости тяжелого бетона при сжатии и растяжении приведено в СП 63.13330.2018 Бетонные и железобетонные конструкции. Актуализированная редакция СНиП 52-01-2003.

Таблица

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа · 10 -3 , согласно таблицы 6.11 п.6.1.15 СП 63.13330.2018 для тяжелого бетона
B10B15B20B25B30B35B40B45B50B55B60B80
19,024,027,530,032,534,536,037,038,039,039,542,0
Значения в МПа
B10B12,5B15B20B25B30B35B40B45B50B55B60B80
19 00021 50024 00027 5003 00032 50034 50036 00037 00038 00039 00039 50042 000
Модули упругости бетона при сжатии и растяжении Eb, МПа · 10-3 согласно СНиП 2.03.01-84*(1996)
Классы по прочности на сжатиеВ3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60
Характеристики бетона
Тяжелые бетоны
Естественное твердение9,51316182123273032,534,53637,53939,540
Тепловая обработка при атмосферном давлении8,511,514,5161920,52427293132,5343535,536
Автоклавная обработка7101213,516172022,524,52627282929,530
Мелкозернистые
Естественное твердение, А-группа71013,515,517,519,522242627,528,5
Тепловая обработка при атмосферном давлении6,5912,51415,5172021,523
Естественное твердение, Б-группа6,5912,51415,5172021,523
Автоклавная теплообработка5,5811,51314,515,517,51920,5
Автоклавное твердение, В-группа16,51819,5212122232424,525
Легкие и поризованные
Марка средней плотности,
8004,55,05,5
10005,56,37,288,4
12006,77,68,79,51010,5
14007,88,8101111,712,513,514,515,5
160091011,512,513,21415,516,517,518
180011,2131414,715,51718,519,520,521
200014,516171819,521222323,5
Ячеистые автоклавного твердения
Марка средней плотности, D
7002,9
8003,44
9003,84,55,5
100067
11006,87,98,38,6
12008,48,89,3
Читать еще:  Скульптурный бетон своими руками

Определение упругости и единицы измерения

В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях. На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.

Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.

От чего зависит упругость бетона

1. СОСТАВ. Бетон с более высоким модулем упругости подвергается меньшей относительной деформации. Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. КЛАСС. Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие. Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона. Так, у бетона класса В10 величина упругости равна 19, а у В30 она составляет 32,5, т. е. бетон В30 является более устойчивым к относительным деформациям по сравнению с В10.

Расчет модуля упругости

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца.

Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Если материал не имеет армирования, то он не способен к растяжению. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов. С учетом результатов экспериментов строится график, отражающий показатели зависимости прикладываемого воздействия и разрушения опытного образца.

Методика расчета бетонных конструкций содержится в СНиП 52-01-2003, распространяющихся на все строительные бетонные и железобетонные конструкции.

Модуль упругости бетона (начальный, деформации): В15, В20, В25, В30

В расчете железобетонных конструкций по второй группе предельных состояний применяют физическую величину, называемую модулем упругости бетона, или модулем Юнга. Он характеризует свойства твердого вещества в зоне упругих деформаций.

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.


Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

(вернуться к списку таблиц)

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см2).



Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;
Читать еще:  Бетонные лотки для водоотвода


Модуль упругости бетона разных классов

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Определения модуля упругости бетона

Модуль упругости – определение знакомо по большей части профессионалам. Малоопытному специалисту либо обычному потребителю это понятие незнакомо. Однако прочность и долговечность возведенного строения во многом зависит именно от этого показателя. Бетон само по себе довольно крепкое изделие. Но все-таки под воздействием некоторых внешних раздражителей он подвержен разрушению. Как раз по этой причине существует пара коэффициентов его крепости – на сжатие и на растяжение. Однако чаще всего обращают внимание именно на первое значение. Соответственно, и другие искомые параметры обязаны быть готовы к таким различным влияниям.

Что такое модуль упругости?

При воздействии повышение разрушения объясняется тем, что бетон известен такой характеристикой, как ползучесть. Сперва во время определенного воздействия внутри него начинается упругое разрушение. Данный эффект означает временное изменение состояния тела, при котором после окончания воздействия все возвращается к исходному состоянию. Если воздействие продолжается, то в конструкции начинаются необратимые разрушения.

Именно поэтому первый вариант воздействия называют упругим разрушением, а второй вариант – пластичным. Данное явление происходит по причине ползучести бетона. Если же воздействие не будет прекращено, то это приведет к значительной деформации строения. Модуль упругости бетона иногда еще могут называть, как коэффициент разрушения. Его выясняют при помощи различных технологий.

Что влияет на модуль упругости?

  • Прямое воздействие оказывают свойства компонентов в бетоне. Мало того, данная подвластность полностью прямолинейная. У бетонов с небольшим весом этот показатель меньше, а вот у более тяжелых крупнозернистых видов он больше.
  • Классификация бетона. Для выяснения зависимости искомого коэффициента составлена специальная таблица. Обычный потребитель в работе применяет небольшой перечень данных изделий, в связи с этой причиной нет необходимости приводить ее целиком. По известным показателям прочности и модуля понятно, что они пропорционально зависят друг от друга. Причем, данная зависимость не меняется при температурном воздействии ниже 230С. То есть в основном показатели не меняются вообще. Данный нюанс дает возможность контролировать такую характеристику продукта, как упругость, к тому же это выполнимо в одних и тех же классах материала. Это свойство учитывают для того, чтобы знать какой из продуктов может быть установлен. При возведении загородных частных домов применяют довольно маленький перечень бетонных растворов, согласно их классности. Чаще всего этот выбор происходит в диапазоне от В7 до В30, а также М100, М150, М200, М250, М300, М350, М400. Однако данного ассортимента полностью хватает для возведения малоэтажных зданий. Это возможно, даже если в строительстве применяются плитные цоколи, а также формируются арки для декорирования.
  • Возраст бетона. Известна зависимость между повышением искомого коэффициента и периода эксплуатации. По этой причине во время определения показателя в нужный отрезок времени, применяют специальные таблицы. В ней указаны первичные данные, которые необходимо умножить на поправочные модули.
  • Метод переработки компонентов. Большую роль играет то, в каких условиях происходило застывание бетона. Ведь он мог отвердеть естественным образом, во время термического воздействия либо с применением автоклава.
  • Длительность влияния давления. Чтобы выяснить этот показатель, начальный показатель множат на требуемый модуль. Для каждого из типов бетона данный модуль имеет свое значение. Для легких, тяжелых и мелкозернистых – 0,85, для поризованных – 0,7.

Прежде чем изучить другие нюансы, оказывающие воздействие на анализируемую характеристику, необходимо подробнее рассмотреть такое определение, как ползучесть бетона. Данный показатель оказывает большое влияние на стадию разрушения изделия. Ведь при недолгой малой нагрузке материал деформируется, но после прекращения воздействия он возвращается в изначальное состояние.

Данный момент можно детально не разбирать, так как весьма сложно определить вид деформации. Внешне пластичная и упругая деформация никак не отличается. Однако стоит указать, что пластичное разрушение объясняется свойством ползучести бетона. В частности, именно этот параметр берется в расчет при долгом воздействии на материал. Модуль ползучести также имеет свое буквенное обозначение:

  • Влагосодержание в окружающем воздухе. Данное обстоятельство связано с модулем ползучести. Если необходимо точное значение, то она также узнается из соответствующих таблиц. В таком случае во внимание также берутся температура и уровень радиационного фона.
  • Наличие металлического каркаса для армирования. Благодаря своему составу, металл не так сильно подвержен разрушениям вследствие воздействия, в отличие от простого бетона.

Необходимо отметить, что каким бы ни был показатель упругости, металл всегда превосходит бетон по прочности. Благодаря такому свойству, использование каркаса для армирования в любом случае повысит собственный показатель упругости у бетонного изделия.

Таблица зависимости модуля упругости от различных факторов

Довольно полезно будет изучить специальную таблицу, ведь именно благодаря ей появилась возможность выяснить модуль упругости бетона и не только. В данной таблице имеются следующие компоненты:

  • карбид кремния – модуль упругости 35,5; температура плавления 2800С;
  • периклаз – модуль упругости 24,6; температура плавления 2800С;
  • корунд – модуль упругости 37,2; температура плавления 2050С;
  • железо – модуль упругости 21,1; температура плавления 1539С;
  • медь – модуль упругости 11,2; температура плавления 1083С;
  • алюминий – модуль упругости 7,0; температура плавления 660С;
  • свинец – модуль упругости 1,5; температура плавления 327С;
  • полистирол – модуль упругости 0,3; температура плавления 300С;
  • каучук – модуль упругости 0,007; температура плавления 300С.

В данном перечне приведены температуры плавления разных компонентов, подобный норматив обладает прямой зависимостью от искомого модуля. В связи с чем становится ясно, что владение информацией о влиянии различных факторов на показатели бетона – это важно.

Способы определения модуля упругости

Норматив упругости конструкции выясняется в ходе экспериментальных исследований на пробах по бетону Данное значение принято обозначать буквой «Е». Однако у него имеется и другое обозначение – «модуль Юнга». Профессионалы разделяют показатель упругости на подвиды: начальный и приведенный.

Необходимо заметить, что обычному малоопытному потребителю непростые формулы и примеры вычетов, которые делаются по данному показателю, никоим образом не пригодятся в жизни. В подобных тонкостях и нюансах может разобраться лишь человек опытный либо владеющий специальным образованием.

Показатель упругости возможно выяснить во время проведения отдельных проб на способность противостоять сжатию либо растяжению. Стоит заметить, что материал, не содержащий внутри армировочный каркас к такому явлению как растяжение, не подвластен. По результатам проведенных экспериментов, происходит построение графика, в котором указана зависимость между прикладываемым воздействием и разрушением изделия.

Начальный показатель, характеризующийся упругостью бетона, выясняется не так легко, как хотелось бы. Но его примерное значение можно выяснить косвенным методом. Довольно часто секущая полоса к кривой, обозначающая зависимость воздействия от разрушения, расположена параллельно относительно касательной линии. Также правильным будет определение того, что показатель упругости материала повышается прямо пропорционально значению его крепости. Но все-таки это является точным лишь для главной части графика. Также значение сильно подвластно условиям и месту эксперимента.

Заключение

Данная тема является весьма сложной и непростой. Однако при должном изучении никаких трудностей возникнуть не должно. Стоит заметить, что условия резки железобетонных изделий при помощи алмазных кругов во многом подвластны показателям упругости материала. То же самое можно сказать и об алмазном бурении изделий.

При разных показателях упругости увеличивается либо уменьшается сопротивляемость изделия. Хотя бы для облегчения такой работы стоит знать показатели упругости бетона.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector