Urbos.ru

Стройка и ремонт
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сушка бетона электричеством

Сушка бетона электричеством

Прогрев бетона с использованием электрической энергии может осуществляться тремя способами.

Первый — наиболее распространенный — заключается в пропускании электрического переменного тока через свежеуложенный бетон. При этом энергия тока, превращаясь в тепло, нагревает бетон. Второй способ заключается в обогреве бетона снаружи (а иногда и изнутри) электрическими печами. Третий способ (индукционный прогрев) заключается в нагреве стальной арматуры вихревыми токами, индуцированными в ией при пропускании переменного тока через обмотку из изолированного провода вокруг конструкции.

При электропрогреве температура бетона поднимается обычно до 60—80° С. При такой температуре бетон уже в течение 1—2 суток получает прочность, достаточную для полной распалубки.

Для включения свежеуложенной бетонной- смеси в электрическую цепь пользуются так называемыми электродами, представляющими собой металлические пластинки, плотно соприкасающиеся с бетоном, или стержни, закладываемые в бетон. Пластинчатые электроды, смонтированные на специальных щитах, применяются главным образом при прогреве железобетонных плит перекрытий, на которые эти щиты укладываются сверху ( 120,а). Стержневые и струнные электроды используются при прогреве балок, колонн, фундаментов и других конструкций ( 120,6). Иногда при небольших объемах работ применяют «плавающие» электроды из катанки, слегка втапливаемые в поверхность бетона.

При электропрогреве железобетонных конструкций необходимо строго следить за тем, чтобы электроды не соприкасались с арматурой. Сталь является хорошим проводником тока, и при соприкасании арматуры с двумя электродами, подсоединенными к различным проводам, происходит короткое замыкание, т. е. ток возрастает сразу до очень большой величины, при которой могут расплавиться и перегореть провода, трансформаторы и пр. Для того чтобы не было соприкасания наружных электродов (пластинчатых, плавающих) с арматурой, необходимо строго следить за величиной защитного слоя бетона. Внутренние струнные электроды закрепляют временно специальными крюками, которые вынимают по ходу бетонирования. Стержневые электроды либо крепят к опалубке (в тех случаях, когда они проходят сквозь опалубку), либо вставляют их в бетон через открытую поверхность (например, в балках) во время бетонирования.

Перед бетонированием должна быть тщательно проверена арматура. Неточность в расположении арматуры приводит к местному перегреву конструкции и коротким замыканиям.

Выгружать бетонную смесь в опалубку нужно осторожно, чтобы не сбить электроды. Надо следить, чтобы не загрязнялись выступающие концы электродов, иначе не будет хорошего контакта с проводами.

Перед бетонированием необходимо удостовериться втом, что бетонируемый участок не находится подтоком.

Открытые поверхности по окончании бетонирования должны быть укрыты утепляющими материалами. Обогрев бетона с неукрытыми поверхностями не допускается.

Рабочие швы при бетонировании с электропрогревом должны размещаться так, чтобы расстояние от шва до ряда электродов, находящихся в бетоне, не превышало 100 мм.

Нагревание и охлаждение бетона при электропрогреве должны производиться постепенно. Конструкции с модулем поверхности 6 и выше допускают более интенсивный подъем температуры — до 10° в 1 ч, а при длине их до 6 м — до 15° в 1 ч, конструкции с модулем поверхности 2—6 — до 8° в 1 ч. Скорость остывания конструкций не должна превышать: 10° в 1 ч для конструкций с модулем поверхности свыше 10; 5° в 1 ч при модуле поверхности 6—10. Режимы прогрева и допустимая интенсивность остывания массивных конструкций, обеспечивающие отсутствие трещин в поверхностных слоях бетона, определяются расчетом.

Наивысшие допустимые температуры бетона при электропрогреве зависят также от модуля поверхности бетона. Чем тоньше конструкция, тем больше опасность пересушивания бетона при прогреве за счет интенсивного испарения влаги из бетона. Поэтому прогрев бетона электродами рекомендуется только для конструкций с модулем поверхности не более 20. Более тонкие конструкции (например, плиты толщиной менее 10 смf) рекомендуется обогревать электропечами либо применять обогрев паром или теплым воздухом.

Предельные температуры бетона при электропрогреве зависят также от вида применяемого цемента. Медленно твердеющие цементы допускают прогрев при более высоких температурах

Бетоны на глиноземистых цементах прогревать не разрешается, так как при температуре бетонов на этих цементах выше 30°С происходит резкое падение прочности.

Интенсивность превращения электрической энергии в тепло в бетоне зависит от затрачиваемой на прогрев электрической мощности и омического сопротивления бетона. В процессе прогрева и затвердевания бетона его электрическое сопротивление растет, в связи с чем приходится повышать и напряжение на электродах. Поэтому электродный прогрев бетона обычно ведется через специальные понизительные трансформаторы, позволя

ющие в процессе прогрева изменять напряжение ступенями в пределах 50—120 В.

Если подавать электроэнергию в тело бетона не непрерывно, а отдельными короткими «импульсами» (продолжительностью 0,5—2 мин), прерываемыми несколько более длинными паузами, то возможно обойтись без трансформаторов, регулируя величину затрачиваемой на

прогрев мощности изменением соотношения между длительностью импульсов и пауз между ними. Требуемый режим прогрева может быть заранее запрограммирован и осуществляться автоматически с использованием, если это потребуется, датчиков температуры в бетоне в качестве элементов обратной связи.

Второй способ (применение электронагревателей сопротивления) наиболее удобен при прогреве конструкций замкнутой формы с пустотами и т. п., а также при использовании опалубки, в которую вмонтированы электронагреватели («греющая» опалубка). В ряде случаев удобны гибкие «греющие» укрытия («электроодеяла», «термоактивная резина» и др.).

Третий способ (индукционный прогрев) особенно эффективен при прогреве каркасных конструкций, густо насыщенных арматурой, а также конструкций, бетонируемых в стальной опалубке.

При индукционном прогреве по наружной поверхности опалубки элемента (например, колонны) укладывается последовательными витками изолированный провод- индуктор При пропускании через индуктор переменного тока вокруг него создается переменное электромагнитное поле, индуцирующее в стальной арматуре и опалубке (из стали) токи, нагревающие сталь, а от нее — за счет теплопроводности — и бетон.

Шаг витков провода и количество витков определяются расчетом, в соответствии с которым изготовляются шаблоны с пазами для укладки витков индуктора. Предварительный прогрев арматуры не требуется. По условиям техники безопасности прогрев ведут при пониженных напряжениях

Смотрите также:

Стройиздат, 1988. Бетонные и железобетонные работы являются одним из основных видов строительных работ, а профессии бетонщика и арматурщика — массовыми строительными профессиями.

Бетонные и железобетонные работы являются . Производство бетонных работ в условиях сухого жаркого климата . Календарный план организации производства железобетонных работ .

Бетонные и железобетонные работы производятся при изготовлении монолитных и сборных бетонных и железобетонных конструкций. Эти работы состоят из следующих комплексных процессов: изготовления и установки опалубки.

Глава X. БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ РАБОТЫ. Заделка стыковых соединений сборных железобетонных конструкций. От качества заделки монтажных стыков железобетонных конструкций зависят прочность конструкций.

наличием известных отечественных научных и инженерных школ в области теории бетона, технологии производства бетонных и железобетонных работ, расчета железобетонных конструкций

. бетонных и железобетонных работ осуществляют на всех этапах их производства, начиная с изготовления бетонной смеси и кончаяКачество готового бетона и железобетонного изделия во многом зависит от состава бетонной смеси и качества составляющих материалов.

При небольших объемах работ опалубку можно изготавливать на строительной площадке. Бетон и железобетон. Бетонные и железобетонные работы являются .

Арматурные и бетонные работы ведутся обычными способами. При этом, как правило, все нагрузки от твердеющего бетона передаются на смонтированные сборные элементы.Бетонные и железобетонные работы являются .

Завершающим этапом проверки производства бетонных и железобетонных работ является контроль уже готовых конструкций перед сдачей зданий и сооружений Государственной приемочной комиссии.

Подвижность бетонной смеси проверяют не реже двух раз в смену у мест ее приготовления и укладки. Каждая строительная организация производящая бетонные и железобетонные работы, обязана вести журнал бетонных работ.

1. Объем подготовки под железобетонные, бетонные и буто-бетонные фундаменты нормами не учтены и должны исчисляться отдельно.9. Объем работ по устройству железобетонных перекрытий с вкладышами из легкобетонных какнгй, пустотелых керамических блоков и т. п.

Бетонные и железобетонные работы являются . Производство бетонных работ в условиях сухого жаркого климата . Календарный план организации производства железобетонных работ .

В зависимости от способа производства работ различают монолитные, сборные и сборно-монолитные бетонные и железобетонные конструкции с ненапрягаемой и напрягаемой арматурой.

Укладка бетона вибробетон. Глава 7. БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ РАБОТЫ . а поверхности бетонной, железобетонной и армоцементной опалубок — облицовок должны быть смочены водой. .

Организация бетонных и железобетонных работ должна обеспечить скоростное возведение сооружений. Для этого следует: производить работы не менее чем в две смены; сокращать разрывы во времени между работами разных бригад на данной захватке.

Бетонные и железобетонные работы являются одним из основных видов строительных работ, а профессии бетонщика и арматурщика — массовыми.

К содержанию книги: Строительные работы.Бетонные и железобетонные изделия и конструкции изготовляют на специальных . Пропаривание осуществляют в камерах периодического и.

Технология и организация возведения железобетонных конструкций. Основы организации бетонных и железобетонных работ.К содержанию книги: Бетонные и железобетонные работы.

Обеспечение высокого качества бетонных и железобетонных работ, выполняемых при отрицательных температурах окружающего воздуха, обусловливает необходимость соблюдения определенных требований.

Глава 7. БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ РАБОТЫ . а поверхности бетонной, железобетонной и армоцементной опалубок — облицовок должны быть смочены водой. .

Оборудование для прогрева бетона

Зимнее строительство, в частности бетонные работы, сопряжены с целым рядом сложностей, связанных с просушкой цементобетонных растворов. Дело в том, что вода, находящаяся в составе бетонного раствора, быстро замерзает, и смесь не набирает необходимую прочность. Весной при оттаивании воды бетонный монолит трескается, крошится и даже разваливается на куски. Чтобы избежать негативных последствий, при температурах ниже +5 градусов Цельсия технический надзор требует просушивать бетон с помощью электрического прогрева. Конечно, это увеличивает стоимость строительных работ, но затраты полностью компенсируются прочностью, надежностью и долговечностью железобетонных конструкций.

Основные способы прогрева бетона

ТЕРМОМАТЫ. Этот метод предполагает застилать поверхности бетонной смеси специальными электрическими матами. Но такой прогрев не всегда можно реализовать на практике: например, маты нельзя настилать на выровненные виброрейкой поверхности. Для обогрева стен и колонн, когда бетонная смесь заливается в опалубку, этот способ вообще непригоден. И главный недостаток – с помощью термоматов можно прогреть лишь самый верхний слой бетонного раствора.

ТЕПЛЯКИ. Этот способ предполагает возведение теплоизолированного шатра, который обогревается при помощи тепловых пушек. Метод достаточно прост, но при этом требует значительных финансовых затрат. К тому же тепляки не подходят для строительства крупных объектов, требующих прогрева больших объемов бетонной смеси.

ЭЛЕКТРИЧЕСКИЙ КАБЕЛЬ. Суть метода заключается в обогреве раствора с помощью проводов, уложенных внутри бетонной конструкции. Здесь можно использовать кабели, подключенные к бытовой сети в 220 В, а также провода, подсоединенные к прогревочным станциям (трансформаторам). В зависимости от вида кабеля минимальные температуры, при которых может применяться электрический способ обогрева, составляют от -25 до -40 градусов Цельсия.

Провод ПНСВ для обогрева бетонных растворов

Прогрев бетона с помощью кабеля ПНСВ – один из самых эффективных и экономически выгодных способов зимнего бетонирования. Технология обогрева заключается в следующем: закрепленный на арматурной конструкции и залитый раствором кабель преобразует электричество в тепловую энергию, которая нагревает и просушивает бетонный раствор. Нагрев проводов осуществляет регулируемая трансформаторная станция, мощность которой можно менять исходя из температуры окружающего воздуха.

Трансформаторы для прогрева бетона

Для обогрева и просушки жидкого бетона можно использовать трансформаторы с разными вариантами входных напряжений. Как правило, на стройплощадках применяются прогревочные станции СПБ, КТПТО и ТСДЗ, которые могут вырабатывать мощность в 20–100 кВа.

С помощью одной станции можно обеспечить прогрев 100 м3 бетонного раствора, но строительные предприятия практикуют одновременное подключение сразу нескольких трансформаторов (3-х и более). Это значительно увеличивает объемы и скорость проведения бетонных работ. Для подключения одного трансформатора необходимо наличие 3-фазной электросети с напряжением в 380 В, поэтому, прежде чем вводить в эксплуатацию несколько станций, нужно обеспечить стройплощадку электропитанием достаточной мощности. Важно: корпус станции и нейтральный провод необходимо обязательно заземлить!

Выбирая трансформаторы, учитывайте их конструктивные особенности и предполагаемые условия эксплуатации. Станции СПБ более надежны, так как имеют медную обмотку с низким сопротивлением. Агрегаты ТСДЗ оснащены только алюминиевой обмоткой, но для ее охлаждения в конструкции станции предусмотрен дополнительный вентилятор. Трансформаторы ТСДЗ и СПБ относятся к сухим силовым станциям, а КТПТО работают с использованием масла. Несмотря на различия в технических характеристиках, все перечисленные станции рассчитаны на длительную беспрерывную работу при температурах до -40 градусов Цельсия, что делает их незаменимыми в условиях холодного российского климата.

Особенности кабеля ПНСВ

Кабель для прогрева бетона марки ПНСВ представляет собой стальную жилу с круглым сечением, заключенную в изоляционный слой (полиэтилен или ПВХ-пластик). Производитель предлагает провода ПНСВ с сечением 1–3 мм, но самым востребованным является кабель диаметром 3 мм: его прочную изоляцию трудно повредить при монтаже, а значит замыкание секций и перекос фаз практически исключены. В комплекте с проводом ПНСВ поставляются холодные окончания – специальные ответвления, которые выводятся за пределы бетонируемого участка и не нагреваются при подключении кабеля к силовой станции.

Читать еще:  Декоративные изделия из бетона

Основные схемы обогрева бетона

Способы монтажа кабеля зависят от вида бетонной конструкции. Армированные и неармированные монолиты, а также отдельные виды трансформаторов имеют свои схемы укладки и варианты расчета проводов. В целом цепь электрооборудования для нагрева бетонного раствора выглядит следующим образом:

2. Холодные концы.

3. Трасса (алюминиевый провод для разводки фаз).

5. Силовой кабель (для подключения станции к электросети).

Укладка кабеля в будущую бетонную конструкцию – сложная процедура, требующая специальных знаний и навыков. Перед началом монтажных работ необходимо выполнить очистку бетонируемой поверхности от мусора, который может повредить изоляцию кабеля. Укладку провода нужно выполнять мягким полукругом – такой способ исключает перегибы кабеля и переломы жил. Для изоляции кабельных соединений можно использовать двухстороннюю хлопчатобумажную изоленту или термоусадочную трубку.

При монтаже системы обогрева нужно учесть, что на 1 м3 бетонного раствора потребуется примерно 50 м кабеля ПНСВ и около 1 кВт электроэнергии. При таких параметрах сроки полной просушки бетона составят 4 дня.

При обогреве бетона с помощью провода ПНСВ, подсоединенного к силовой станции, используются следующие схемы подключения:

Для каждой схемы подключения кабеля необходимо выполнять отдельные расчеты и разрабатывать собственные технологические карты. Подробные расчеты и другую информацию по оборудованию для прогрева бетона можно посмотреть на сайте компании: «Stroy-Beton»

Начинать просушку бетона можно сразу по окончании заливочных работ. Главное, чтобы кабель был полностью скрыт бетонным раствором, так как оставшиеся на открытом воздухе участки провода могут обгореть. По этой же причине выводы кабеля делают на минимальном расстоянии от прогреваемой бетонной конструкции.

Преимущества провода ПНСВ в сравнении с термоматами, кабелями ВЕТ и КДБС

Кабель ПНСВ отлично зарекомендовал себя при обогреве различных бетонных конструкций. В отличие от термоматов он может использоваться не только для бетонирования горизонтальных поверхностей, он успешно просушивает стены, колонны и другие конструкции, где бетон заливается в опалубку.

Кабели ВЕТ и КДБС имеют широкую сферу применения, но питаются только от бытовой сети в 220 Вольт. Однофазное напряжение ограничивает мощность нагревательной системы, поэтому кабели применяются при температурах не ниже -25 градусов Цельсия и не используются для просушки больших объемов бетонной смеси.

Провод ПНСВ может подключаться сразу к нескольким трансформаторным станциям, мощность которых регулируется в необходимых пределах. В итоге возрастают объемы и скорость бетонирования, а значит и экономическая эффективность строительных работ.

Статья предоставлена компанией «Stroy-Beton»

Как быстро и правильно высушить бетон

Удаление излишков влаги из слоя бетона – дело долгое и требует времени. Сроки проведения строительных работ очень влияют на стоимость затрат на строительство. Но мы знаем, как ускорить сушку. И не просто высушить быстрее установленных сроков, но и оставить после себя бетон в идеальном состоянии без трещин и повреждений.

Осушка бетонных стяжек, перекрытий, блоков, перегородок и других строительных конструкций стандартно зависят от погодных условий и сроков строительства. На этот процесс влияют и влажность атмосферного воздуха и температура окружающей среды. Не всегда работы могут вестись в летнее время – наиболее благоприятное для проведения бетонных работ. Часто заливка цементно-бетонных смесей выполняется в межсезонье с более низкими температурами.

Как быстро высушить бетон, чтобы сократить или не сорвать сроки строительства, и не остаться в убытке? Мы Вам расскажем все особенности.

Как сушат бетон: условия температуры и влажности

По условиям технического процесса, из недавно уложенного бетона в помещение регулярно выделяется определенное количество влажности. Это зависит от толщины просушиваемого слоя, состава бетонной смеси и количества времени сушки. Сам же процесс осушки бетонных материалов зависит от температуры воздуха и уровня его влажности. Нормы и цифры приводятся в разных источниках разные: в зависимости от состава смесей, примесей и технологии их применения. Допустимые температуры для проведения строительных работ: +3 …+25 °C. А при температурах ниже + 5 °C бетон схватывается в несколько раз дольше. При значениях ниже -4 °C вода в бетоне может замерзнуть, при этом, затвердевание прекращается, и на прочность бетона не будет никаких гарантий. Условия для сушки бетонных стен и стяжек требуют таких же теплых температур.

Нужна консультация?

В любом случае, закономерно: чем больше температура воздуха (до +20 °C), тем интенсивнее твердеет бетон, чем выше уровень влажности воздуха в замкнутом помещении, тем хуже идет процесс. Чем быстрее проходит процесс затвердевания бетона, тем короче сроки строительства.

Оптимальным уровнем относительной влажности для сушки бетона считается 40-50% RH, а максимально допустимая влажность — 75% RH. Но не стоит сушить пол или конструкции при влаге 75%, ведь нужно понимать, что и сам бетон выделяет в воздух большое количество воды, поэтому в итоге можно получить и все 100% RH, если не выводить воду.

Как быстрее сушить бетон, и какие способы применяют

В современном строительстве для заливки фундаментов, стяжек и монтажа каркасных конструкций в холодное время используют несколько способов нагрева слоя бетона. Изнутри или снаружи осушают материал при помощи электродных сеток или стержней, ИК обогревателями, тепловыми матами, с помощью тепловых пушек, греющими кабелями, вертикальными электродами и другими методами. Это все энергоемкие и затратные технологии, некоторые из них применяются для работ зимой на открытом воздухе.

Рассмотрим сушку зданий после строительства. По проведенным исследованиям доказано, что сдача в эксплуатацию здания после качественной просушки снижает затраты на отопление в первые три года введения в эксплуатацию в2-3 раза! А это говорит о качестве выполненных работ. Одним из способов повысить температуру внутри помещения для ускорения процессов отвердевания бетонных конструкций и сушки покрытий является изоляция объекта от внешнего холодного воздуха и нагрев внутреннего воздуха нагревателями – тепловыми пушками или прочими нагревательными приборами.

Недостаток тепловых пушек – акцентированный локальный нагрев. Перегрев поверхностного слоя бетонных изделий может привести к растрескиванию поверхности, или закупориванию верхнего слоя, что не допустимо. При этом встает задача воздухообмена для поддержания оптимального уровня влажности – до 40-50%. Необходима вентиляция помещения, чтобы все внутреннее тепло уходило в трубу, не говоря о лишних энергозатратах.

Современный подход: как ускорить сушку бетона

Затратные и энергоемкие способы уходят от использования. Все чаще для осушки зданий и изделий из бетона применяют мощные и производительные осушители воздуха. Так, применение для сушки зданий конденсационных осушителей обеспечивает снижение энергозатрат до 80%! Единственное условие: осушение будет эффективным, если помещения замкнутые.

Почему осушителями воздуха бетон сушиться лучше всего:

  • Процесс осушения контролируется по температуре и установленному уровню относительной влажности.
  • Нет риска пересушивания или деформации поверхностей или конструкции.
  • Электроэнергия, подводимая к компрессору и двигателю, преобразуется в тепло для нагрева воздуха в помещении.
  • Осушение непрерывное и плавное, с постепенным снижением уровня влажности.

Какие условия для применения различных типов осушителей воздуха

На диаграмме, предлагаемой производителями осушителей воздуха, показано, какой вид осушителей предпочтителен для применения в строительстве при различных условиях влажности и температуры.

Теперь можно сделать правильный выбор, если стоит задача подобрать осушитель для бетонного пола или стяжки, и знать в каких условиях будут производиться работы.

Приведем модели надежных и безотказных мобильных осушителей воздуха, которые подходят для сушки бетона.

1. Мобильные осушители TROTEC TTK 165 ECO (52 л/сут) и TROTEC TTK 655 S (150 л/сут) – профессиональные и незаменимые помощники на стройплощадке для постоянного и длительного использования.

2. Адсорбционные осушители TROTEC серии TTR 400 D (38,4 л/сут) и TTR 500 (52,8 л/сут) с подмесом подогретого воздуха, способны эффективно работать даже при низких температурах. Для небольших помещений отлично прослужит модель Trotec TTR 200 (8,4 л/сут) из этой же серии.

3. Отличные показатели по влагоудалению показывают и мобильные осушители Celsius MDH50 (50 л/сут.) и Celsius MDH120 (120 л/сут.) с рабочими температурами 0 — +35°C.

Как убрать влагу из бетонного пола: основы расчета

Немножко теории. Существуют нормы влагосодержания в отдельных строительных материалах элементов конструкций зданий.

Используя эти нормы можно вычислить, какое количество влаги содержится в бетонном полу, или перегородках. Определить, как удалить влагу из бетонной плиты известной площади и толщины, теперь очень просто: мы знаем производительность одного осушителя – например, Celsius MDH 90 удаляет до 90 л конденсата в сутки, и теперь можем рассчитать, сколько дней потребуется для удаления полученного количества влаги из бетона, т. е. получим сроки осушения. Осушитель воздуха работает намного эффективнее, чем проходит стандартная просушка бетона, которая может занимать месяц или даже больше. Вся влага, удаляемая из объема воздуха, отводится конденсатным насосом в дренажную систему (канализацию).

Как сушить бетонную стяжку или перекрытия с применением осушителя воздуха? Так же, как в описанном выше случае с бетонными плитами. НО! Есть некоторые моменты, о которых не стоит забывать при расчетах или подборе осушителя воздуха. Летом в теплом воздухе гораздо больше влаги, чем в морозном воздухе зимой. При подаче наружного теплого воздуха в помещение, уровень влажности у него выше. И производительность осушения тоже выше при более высокой температуре.

Такие зависимости показывают, что для определенных погодных условий производительность осушения различная. Данные производительности при разных значениях влажности и температуры указываются в Паспорте устройства.

Как сушить бетонные блоки

В технологических процессах по производству бетонных блоков также полезно использовать осушители воздуха. Они равномерно, гораздо производительнее и с меньшими энергозатратами удаляют влагу из блоков, не требуют высоких температур для нагрева и безопаснее в эксплуатации. Главное, сроки сушки намного короче.

Теперь гораздо легче выяснить, как сушить бетонные изделия в более сжатые сроки, ведь осушители воздуха могут устанавливаться внутри или снаружи помещения, передвигаться с места на место, и процесс можно автоматизировать. Осушитель сам будет контролировать нужный уровень влажности, оптимальный для плавного процесса сушки.

Как высушить бетонный пол после наводнения или утечки воды

В таких случаях, прежде всего, необходимо локализовать место затопления, перекрыть поступление воды, предотвратить снижение температуры воздуха в помещении для большей производительности осушения, и установить мощный осушитель. Также следует организовать непрерывный отвод конденсата в дренаж.

Подскажем. Осушитель воздуха может работать эффективнее, если включить дополнительный тепловентилятор. Перемешивание воздуха более и менее влажных слоев с подогревом воздуха намного увеличивают продуктивность осушения. Сроки сушки сокращаются почти наполовину! Но при использовании адсорбционных осушителей это не нужно, так как такой тип оборудования самостоятельно повышает температуру в помещении.

Пример мощного осушителя для экстремальных условий работы — Trotec TTK 800 (150 л/сут).

Чтобы не ошибиться с выбором модели, узнайте больше информации об этих и других моделях осушителей в специализированном интернет-магазине осушителей. Выбирайте постоянного помощника для работы, или берите агрегат в аренду! Наши специалисты ответят на все вопросы и помогут решить Ваши проблемы.

Сушка бетона электричеством

  • О НАС
  • ПРОДУКЦИЯ
  • ДОКУМЕНТАЦИЯ
  • СТАТЬИ
  • КОНТАКТЫ

  • О компании
  • Каталог оборудования
    • Пневматическое оборудование
      • Компрессоры производства Харьковского завода Лидер
        • ВКП LB 340 10-50A
        • ВКП LB 340 10-100
        • ВКП LB 440 10-50
        • ВКП LB 440 10-100
        • ВКП LB 440 10-200
        • ВКП LB 550 10-100
        • ВКП LB 550 10-270
        • ВКП LB 750 10-100
        • ВКП LB 750 10-270
        • ВКП LB 750 10-500
        • ВКП LB 340В 10-100
        • ВКП LB 550В 10-270
        • ВКП LB 750В 10-270
        • ВКП W1100 10 (12)-500(HD)
        • ВКП W1520 10-500T
        • ВКП W2200 10-500(HD)
        • 15 EN-10-500
        • 20 EN-10-500
        • ВК-15s
        • ВК-20s
        • ВК-40s
        • ВК-50s
      • Компрессоры производства Бежецкого завода АСО (Россия)
        • Компрессор К1
        • Компрессор К12
        • Компрессор К29
        • Компрессор К23
        • Компрессор К-24М
        • Компрессор С-415М
        • Компрессор K-25M
        • Компрессор C-415M1
        • Компрессор K2
        • Компрессор K-33Ф
        • Компрессор К22
        • Компрессор С-416М
        • Компрессор K20
        • Компрессор К6
        • Компрессор К3
        • Компрессор К31
        • Компрессор C-416M1
        • Компрессор К30
      • Компрессоры производства Вильнюсского завода СОМ (Литва)
      • Ресиверы воздушные
      • Ремонт и обслуживание молотков отбойных пневматических
      • Молотки отбойные пневматические
        • Молоток отбойный пневматический МОП-2
        • Молоток отбойный пневматический МОП-3
        • Пневматический отбойный молоток МОП-4
        • Бетонолом пневматический БК-1, БК-2, БК-3
        • Молоток отбойный пневматический МО-2К
        • Пика остроконечная
        • Зубило к молотку отбойному
        • Лопатка к молотку отбойному
      • Молотки рубильные пневматические
      • Молотки клепальные пневматические
      • Машины сверлильные пневматические
      • Шлифмашины пневматические
      • Трамбовки пневматические
      • Гайковерты пневматические
      • Аппараты струйной очистки
    • Вибрационное оборудование
      • Вибраторы площадочные электромеханические общего назначения
        • Вибратор площадочный ИВ-99Б
        • Вибратор площадочный ИВ-98Б
        • Вибратор площадочный ЭВ-320
        • Вибратор площадочный ИВ-99Е
        • Вибратор площадочный ИВ-98Е
        • Вибратор площадочный ЭВ-320Е
        • Вибратор площадочный ИВ-101Б
        • Вибратор площадочный ИВ-111А
        • Вибратор площадочный ИВ-127
        • Вибратор площадочный ИВ-104Б-6
        • Вибратор площадочный ИВ-104Б
        • Вибратор площадочный ИВ-106
        • Вибратор площадочный ИВ-107А
        • Вибратор площадочный ИВ-105
        • Вибратор площадочный ИВ-105-2.2
        • Вибратор площадочный ИВ-60-16
        • Вибратор площадочный ИВ-43-25
        • Вибратор площадочный ИВ-60-50
        • Вибратор площадочный ЭВВ-25.0-1500У2
      • Вибраторы площадочные КЕМ-Р, UNI (Турция)
      • Вибраторы площадочные ОМВ (Италия)
      • Вибраторы площадочные фланцевые
      • Вибраторы площадочные (поверхностные) общего назначения новой серии
        • Вибраторы площадочный ИВ-05-50; ИВ-2,5-25; ИВ-99Н
        • Вибраторы площадочный ИВ-11-50; ИВ-06-2,5; ИВ-98Н
        • Вибраторы площадочный ИВ-01-50; ИВ-0,5-25; ИВ-01-50Е
        • Вибраторы площадочный ИВ-12-25; ИВ-20-50
        • Вибраторы площадочный ИВ-25-25; ИВ-40-50
      • Вибраторы площадочные взрывозащищенные
      • Вибраторы глубинные для укладки бетона
      • Пневматические вибраторы
      • Виброуплотнители, виброплиты
      • Виброрейки бензиновые
      • Виброрейки для укладки бетона
      • Виброплощадки
      • Вибросито
    • Оборудование для дорожных работ

      Оборудование для резки, гибки труб и арматуры

      Монтажные и герметизирующие материалы

      Оборудование для приготовления и укладки бетонных смесей

      ПРИМЕНЕНИЕ ТРАНСФОРМАТОРОВ ДЛЯ ПРОГРЕВА БЕТОНА КТП, КТПТО, ТМОБ -63/0,38-68 и ТМОБ-80/0,38-68

      МЕТОДЫ ПРОГРЕВА БЕТОНА

      Бетон набирает свою марочную прочность в течение 28 дней в нормальных условиях (температура +15°С во влажной среде). При повышении температуры бетона значительно сокращаются сроки твердения. При замерзании бетона твердение его прекращается, а при последующим оттаивании процесс твердения возобновляется. Однако, при замерзании бетона до набора 70% прочности, он не достигает марки.

      Бетонирование монолитных конструкций в зимних условиях, осуществляемое при ожидаемой среднесуточной температуре наружного воздуха ниже +5°С и минимальной суточной температуре ниже 0 °С, должно производиться с обеспечением твердеющему бетону оптимальных температурно-влажностных условий. С этой целью предусматриваются утепление опалубки, укрытие неопалубленных поверхностей монолитных конструкций гидро- и теплоизолирующими материалами, устройство ветрозащитных ограждений и другие мероприятия, направленные на сохранение тепла, содержащегося в уложенном бетоне. Кроме того, СНиП 3.03.01-87 «Несущие и ограждающие конструкции» рекомендует применение нескольких способов выдерживания и обогрева бетона в зимних условиях. В зависимости от вида конструкции и температуры наружного воздуха рекомендуется применение следующих способов зимнего бетонирования:

      Остановимся на способах зимнего бетонирования, связанных с тепловой обработкой монолитного бетона и железобетона при помощи предварительного разогрева бетонной смеси, электродного прогрева, обогрев нагревательными проводами при помощи трансформаторных станций для прогрева бетона.

      Предварительный электроразогрев бетона

      Предварительный электроразогрев бетона предусматривает разогрев бетонной смеси с помощью электрического тока напряжением 220-380 В в короткий промежуток времени (5-10 мин) до температуры 40-60°С. После укладки горячей бетонной смеси в опалубку она остывает по режимам, рассчитываемым так же, как и для способа термоса. Этот способ зимнего бетонирования требует наличия на строительной площадке большой электрической мощности от 1000 кВт для разогрева 3-5 м3 бетонной смеси. Остановимся на способах зимнего бетонирования, связанных с тепловой обработкой монолитного бетона и железобетона при помощи предварительного разогрева бетонной смеси, электродного прогрева, обогрев нагревательными проводами при помощи трансформаторных станций для прогрева бетона. Предварительный электроразогрев бетона Предварительный электроразогрев бетона предусматривает разогрев бетонной смеси с помощью электрического тока напряжением 220-380 В в короткий промежуток времени (5-10 мин) до температуры 40-60°С. После укладки горячей бетонной смеси в опалубку она остывает по режимам, рассчитываемым так же, как и для способа термоса. Этот способ зимнего бетонирования требует наличия на строительной площадке большой электрической мощности от 1000 кВт для разогрева 3-5 м3 бетонной смеси.

      Электродный прогрев бетона

      заключается в том, что выделение тепла происходит непосредственно в бетоне при пропускании через него электрического тока.

      В зависимости от принятой схемы расстановки и подключения электродов электродный прогрев разделяется на сквозной, периферийный и с использованием в качестве электродов арматуры. Применение этого метода наиболее эффективно для слабоармированных конструкций — фундаментов, колонн, стен и перегородок, плоских покрытий и бетонных подготовок под полы. Недостатки применяемых способов электроразогрева бетона:

      Обогрев нагревательными проводами при помощи трансформаторных станций для прогрева бетона.

      Контактный способ электрообогрева бетона основан на передаче тепла бетону от поверхности заложенных в бетон греющих проводов, нагреваемых сильным током до темп. 80°С. Ток подается от трансформаторной станции прогрева бетона. Тепло распространяется, т.к. бетон имеет хорошую теплопроводность. Наибольшая эффективность достигается при использовании проводов со стальной жилой ф1,8 — 3мм. Они допускают прогонную нагрузку на 1м от 80 до 160 ватт, в зависимости от электрического сопротивления и диаметра жилы. Способ обогрева при помощи трансформаторных станций прогрева бетона позволяет обогреть бетон до требуемой прочности. Греющие провода должны размещаться в теле бетона, иначе они сгорят!

      В качестве нагревательных проводов применяют специальные провода для бетона марки ПНСВ1,2 со стальной оцинкованной жилой диаметром 1,2 мм в поливинилхлоридной изоляции (возможно применение радиотрансляционных проводов марки ПТПЖ-2х1,2 с двумя стальными оцинкованными жилами в изоляции из модифицированного полиэтилена). Электропитание нагревательных проводов осуществляют через понижающие трансформаторные станции типа КТП, КТПТО, ТМОБ-63/0,38-68 и ТМОБ-80/0,38-68 которые имеют несколько ступеней пониженного напряжения, что позволяет регулировать тепловую мощность, выделяемую нагревательными проводами при изменении температуры наружного воздуха. Одной трансформаторной станцией прогрева бетона можно обогреть 20-30 м3 бетона. Нагревательными проводами можно обогревать любые монолитные конструкции при температуре наружного воздуха до -30°С.В среднем для обогрева 1м3 монолитного бетона требуется 60 м нагревательного провода марки ПНСВ-1,2.

      Таблица характеристик проводов марки ПНСВ

      Нагревательный провод ПНСВ со стальной жилой и с изоляцией из поливинилхлорида предназначен для прогрева монолитного бетона трансформаторной станцией

      Потребность в электроэнергии для обогрева трансформаторной станцией прогрева бетона определяется расчетами в зависимости от вида конструкций, которые характеризуются величиной, равной отношению площади охлаждения к объему бетона. Как правило, на нее влияют температура окружающей среды, степень защиты конструкций от охлаждения, скорость разогрева бетона в течение одного часа.

      При расчетах необходимо учитывать следующие показатели:

      Обогрев бетона необходимо выполнять при низком напряжении и высокой силе тока в греющих элементах. Для этого рекомендуем использовать специальные трансформаторные станции для прогрева бетона: КТП, КТПТО, ТМОБ-63/0,38-68 и ТМОБ-80/0,38-68.

      Установочная мощность в трансформаторных станциях зависит от напряжения при обогреве бетона.

      Количество греющих элементов, которые необходимо заложить в конструкцию, зависит от объема прогреваемого бетона и требуемой для этого электрической мощности. Для каждой конструкции необходимо выдавать технологическую карту.

      Продолжительность прогрева и выдерживание бетона с учетом фактического времени его остывания можно определить в результате регулярных замеров его температуры и силы тока в греющих элементах, заносимых в журнал производства бетонных работ и графику твердения бетона. Необходимы регулярные лабораторные наблюдения!

      Технические требования при подготовке к электрообогреву

      Готовые греющие элементы размещают и монтируют после укладки арматуры, закладных деталей и завершения электросварки арматуры. Греющие элементы необходимо навивать без натяжения на арматурные каркасы или прокладывают между каркасами по мере их укладки, а при отсутствии арматуры применять инвентарные шаблоны. Греющие элементы не должны касаться опалубки и не выступать из бетона, не соприкасаться с деревянными закладными деталями, чтобы окружал их бетон, при необходимости привязывать к арматуре веревкой. Выводы греющих элементов из бетона должны быть увеличены в сечении провода в 2-3 раза или подсоединением кусков изолированных алюминиевых проводов с изоляцией места подсоединения в пластмассовой трубке! Подключение выводов греющих элементов к инвентарным соединениям питающей сети производить после проверки их мегомметром. Необходимо обеспечить равномерную загрузку фаз низкой стороны подстанции!

      Техническое требование при электрообогреве

      Электрообогрев можно начинать только после завершения укладки бетона и размещения всех греющих элементов и нижней части выводов в бетоне, выполнения указаний техники безопасности!

      В конструкциях сделать скважины для замера температур!

      С помощью токоизмерительных клещей измерить пусковую силу тока во всех греющих элементах, при показаниях превышающих допустимые при пуске необходимо понизить напряжение в сети. Измерение температуры и силы тока производить через 1 час в первые три часа и затем 1 раз в смену с занесением в журнал бетонных работ. Конструкции по возможности укрепить!

      Продолжительность электрообогрева должна обеспечивать набор прочности бетона не менее 50% от марки уложенного бетона, который определяется испытанием контрольных образцов или другими методами.

      Указания по технике безопасности при обогреве бетона при помоши трансформаторных станций для прогрева бетона.

      Электрообогрев бетона необходимо выполнять с соблюдением требований техники безопасности СНиП 111-4-80/гл.11 и ГОСТ12. 1.013-78/ — бетонные и ж/бетонные работы и электробезопасность.
      Надзор за выполнение требований техники безопасности и электробезопасности необходимо возложить приказом на ИТР, имеющего квалификационную группу по электробезопасности не ниже четвертой.

      Монтаж электрооборудования и электросетей, наблюдение за их работой и включение греющих элементов должны выполнять электромонтеры, имеющие квалификационную группу не ниже третий.
      Рабочие других специальностей, работающие на посту электрообогрева и вблизи него, должны быть проинструктированы по правилам электробезопасности. Посторонних лиц на посту в период электрообогрева не допускать!

      Пост электрообогрева оградить по ГОСТ 23407-78, оборудовать световой сигнализацией и знаками безопасности по ГОСТ 12.026-76 и обеспечить хорошим освещением! При перегорании сигнальных ламп должна отключаться сеть электрообогрева.
      Подключение греющих элементов выполнять при отключенной сети.
      Замер температуры бетона и силы тока должен выполнять персонал, имеющий квалификационную группу не ниже второй

      Как прогреть бетонную смесь в зимнее время

      Схватывание бетона происходит при участии воды. Но в зимнее время вся влага в растворе замерзает, делая гидратацию невозможной. Чтобы и в морозы не приостанавливать строительство, на участке организовывают обогрев бетона. Вариантов прогрева разработано немало, и каждая технология находит свое применение.

      На чем основывается выбор?

      Каким способом подогревать зимой бетонные конструкции, зависит от ряда параметров:

      1. Погодные условия. При температуре не ниже -15 °С обогрев нагревательными проводами можно заменить методом «теплой» опалубки.

      2. Класс бетона – от него зависит необходимый срок теплового воздействия до получения надежных характеристик конструкций, залитых зимой. Бетон вплоть до класса В10 должен успеть набрать половину заявленной прочности, прежде чем можно будет закончить прогрев, классы с В12,5 по В25 – около 40%, крепче В25 – около 30%.

      3. Размеры ЖБИ. Для массивных фундаментов рекомендуется электропрогрев бетона электродами или проводами ПНСВ, плюс сохранение набранной температуры «термосом».

      4. Толщина заливки. При незначительных габаритах отдельных элементов армированной конструкции возможно применение индукционного нагрева.

      Чтобы получить монолит заданного качества и оптимизировать затраты на обогрев бетона, рекомендуется для каждого конкретного случая комбинировать различные технологии.

      Метод электродов

      Наиболее часто применяемая технология, основанная на свойстве проводников электрического тока разогреваться. Влажный бетонный раствор тоже превращается в своеобразный проводник, если в нем разместить запитанные электроды. Чтобы «цепь» заработала, их необходимо подсоединить к разным фазам источника переменного тока мощностью 60-127 В.

      Не используйте метод под напряжением свыше 127 В, если работаете с ЖБИ. Бетон с металлической арматурой включать в цепь можно только после профессиональной разработки проекта.

      Технология прогрева бетона электродами требует предварительных расчетов для каждой конструкции. От ее особенностей будет зависеть напряжение подаваемого переменного тока, схема расстановки электродов и даже их вид.

      • Стержневые электроды – металлические пруты небольшого диаметра (от 6 до 12 мм). Используются на удаленных участках особо крупных конструкций, а также для сложных форм (стыков, колонн). При размещении стержневых электродов нужно следить, чтобы они не располагались к опалубке ближе, чем на 3 см.
      • Струнные – длинная стальная проволока диаметром 6-10 мм. Предназначены для участков большой протяженности. Этот способ предпочтителен, если прогрев бетонной смеси электродами выполняется при контакте заливки с уже замерзшим грунтом.
      • Поверхностные – особый тип электродов, роль которых выполняют стальные пластины или полосы шириной в 4-8 см. Проводники крепятся непосредственно к опалубке с оставлением одного свободного конца для подключения к источнику питания. В отличие от погружных электродов поверхностные не контактируют с раствором, так как отделены от него слоем рубероида.

      Металлические полосы обеспечивают прогрев бетона не глубже, чем на половину расстояния от одного электрода до другого. Это тепло достает и до внутренних слоев, но там процессы протекают не так интенсивно. А вот разнофазные пластины могут нагревать весь объем, если он не слишком большой.

      Основное достоинство метода прогрева электродами – возможность поддержания оптимальной температуры бетона в конструкциях любой толщины и формы.

      Особенности различных способов

      1. Использование нагревательных проводов.

      Тот же электропрогрев бетона, но в отличие от электродного метода, увеличение температуры в монолите обеспечивают уложенные в массу изолированные провода. Они сами нагреваются в процессе работы, а раствору передают только тепловую энергию.

      Марки нагревающих элементов:

      1. Чаще всего в зимнее время используется электропровод марки ПНСВ от 1,2 до 3 мм в диаметре.

      При этом нужно учитывать, что ПНСВ не должен во время работы находиться на воздухе, иначе его изоляция просто оплавится. Отсюда и особенности технологии прогрева – применение так называемых холодных концов, подключенных в местах выхода ПНСВ из бетона. Их роль исполняют короткие установочные провода типа АПВ-2,5 или АПВ-4 с алюминиевой жилой.

      Схема прогрева проводом ПНСВ 1,2 при его подключении к трансформатору может быть одно- или трехфазной. Главное, чтобы линии отстояли друг от друга минимум на 15 мм, а сила тока не превышала 15 А. Длина обогреваемых секций подбирается вдвое меньше, чем значение напряжения на трансформаторе.

      2. Применение кабелей КДБС или ВЕТ позволяет полностью исключить из технологии трансформатор для прогрева бетона.

      К такому методу прибегают, когда нет возможности обеспечить станции питание в 380 В или использовать требуемое количество понижающих трансформаторов на объекте. ВЕТ-кабели могут работать от бытовой электросети, на концах они снабжаются соединительными муфтами, что весьма удобно при укладке. Правда, стоит такой провод дороже, чем ПНСВ.

      Подключение производится к понижающему трансформатору, выдающему со второй обмотки 75 или 36 В. Схема укладки провода ВЕТ не отличается от аналогичной для ПНСВ. При этом важно подобрать оборудование, предусматривающее плавную регулировку силы тока. Это позволит поддерживать нормальную температуру в монолитной конструкции.

      Как вариант для частного строительства, подойдет обычный сварочный аппарат. К профессиональному оборудованию относятся трансформаторные станции, которые обеспечивают прогрев до 30 кубов: КТПТО-80/86, серия трансформаторов СПБ либо сухая станция ТСДЗ-63.

      Прогрев с использованием проводов позволяет сократить время набора 70%-ной прочности до нескольких дней. При такой высокой эффективности метод выгодно отличается экономичностью.

      3. Греющая опалубка.

      Контактный прогрев бетона предпочтительно использовать на объектах быстрого возведения. Термоактивная опалубка широко применяется для строительства монолитных домов, но раствор должен иметь высокую скорость застывания. Эта технология довольно требовательна к температуре смеси и окружающей среды: промерзший грунт на глубину 30-50 см и сам состав должны быть прогреты до +15 °С.

      4. Индукционный метод.

      Отлично подходит для изготовления бетонных свай и колонн. Повышение температуры внутри опалубки происходит за счет воздействия электромагнитного поля, создаваемого внешними витками провода. Вся конструкция превращается в своеобразную индукционную катушку, разогревающую металлическую арматуру. А та в свою очередь осуществляет прогрев раствора изнутри. Достоинства метода – равномерный прогрев и возможность производить предварительный разогрев опалубки и армирующих стержней еще до заливки.

      5. Тепловые излучатели.

      Относительно недорогой и наименее энергозатратный способ – прогрев тепловыми пушками, ИК-излучателями и другими внешними электрообогревателями. Его плюсом и одновременно недостатком является локальное воздействие на заливку. Поэтому сфера применения этой технологии ограничивается ремонтными работами, заделкой стыков и изготовлением малых форм. При этом внешний обогрев не будет достаточно эффективен, если обрабатываемую часть конструкции не оградить от внешних условий временным пологом. Достоинства: минимум аппаратуры и кабельной продукции, дешевизна и относительно невысокие энергозатраты.

      Самый дорогой и энергоемкий прогрев бетона в зимнее время применяется только в промышленном строительстве. Смысл технологии заключается в том, что бетон заливается в сложную двухстенную опалубку, через которую подается горячий пар. Он обволакивает бетонную поверхность, образуя «паровую рубашку». Это обеспечивает и равномерный прогрев конструкции, и подачу влаги, необходимой для гидратации.

      Несмотря на всю сложность организации прогрева, этот способ является наиболее эффективным. А для сокращения расходов в сам бетонный раствор вводятся пластифицирующие добавки, ускоряющие процесс твердения.

      Существует и пассивный метод, когда вокруг конструкции создается термос из теплоизолирующих матов. Но он сам по себе неэффективен – его уместно использовать только в качестве дополнительной меры вместе с другими способами.

      Электродный прогрев бетона

      Среди всех существующих способах электропрогрева бетона, прогрев с помощью металлических штырей (электродов) является наиболее простым, но энергозатраты достаточно большие. Преимущество электродного обогрева это почти полное отсутствие расчетов и стабильность самого процесса. Электрод не обгорает и не сгорает в отличие от нагревательного провода ПНСВ. Эффективность такого электропрогрева тоже достаточно высока, ниже я вкратце опишу подготовку и сам прогрев бетона при отрицательной температуре металлическими электродами.

      Если у вас небольшой оббьем заливки бетона, то нет смысла возиться с нагревательными петлями и термо опалубкой. Все зависит от того какой у вас трансформатор для прогрева. Хочу напомнить, что на электроды подается только пониженное напряжение в диапазоне 50 — 100 вольт. Прежде всего, обратите внимание на мощность трансформатора, и учитывайте, что один электрод потребляет 30 – 50 Ампер, все зависит от его диаметра и длины. Самый идеальный вариант воткнуть электрод и замерить нагрузку клещами исходя из показании высчитайте, сколько вытянет ваш трансформатор.

      При строительстве монолитных домов электродами хорошо прогревать колоны и диафрагмы. На одну колону достаточно одного электрода из арматуры диаметром 6 мм. На эту арматуру кидаете фазу от трансформатора, и сушка будет происходить за счет выпаривания влаги при взаимодействии Фазы на электроде с металлоконструкцией колоны, так как она заземлена. Многие при прогреве колоны, забивают туда два электрода, это лишнее колона прекрасно прогревается и от одного электрода.

      При прогреве стен втыкайте электроды с расстоянием 40 – 70 см друг от друга. Также учитывайте нагрузку на фазы, если у вас трехфазный трансформатор. При перекосе фаз распределите правильно нагрузку и качество электропрогрева значительно улучшиться.

      Для начала протяните запитывающие кабеля , потом постепенно по мере заливки втыкайте электроды и подключайте их. Электроды необходимо втыкать сразу после заливки иначе бетон схватиться и у вас ничего путного не выйдет. Обязательно следите за тем, чтобы электроды не соприкасались с металлоконструкцией колоны, иначе погорят провода.

      Для подсоединения берите кабель минимум 4 квадрата по алюминию, меньшее сечение неприемлемо. В процессе прогрева по мере падения ампер на электроде повышайте по возможности вольты на трансформаторе. В этой статье написано все очень кратко и приблизительно ниже есть ссылки на более обьемный материал, который затрагивает все способы электропрогрева бетона, в том числе и электродный прогрев.

      Пособия по прогреву бетона

      Электропрогрев бетона в зимнее время: схемы и способы

      Для того, чтобы предотвратить пагубное воздействие мороза и произвести бетонирование в зимнее время, надо создать для бетона условия, при которых процесс его твердения будет постоянным и равномерным. Этого можно достичь только в том случае, если температура бетонной массы во время ее затвердевания будет близка к +20 0 С, а этого можно добиться только в случае принудительного электропрогрева бетона.

      Самым распространенным методом подогрева бетона, во время заливки в зимнее время, является электропрогрев, который используется в тех случаях, когда обычного утепления объекта не достаточно. Именно о нем мы сегодня и поговорим.

      Прогреть бетон в зимнее время можно несколькими методами:

      1. Прогрев бетона электродами.
      2. Электропрогрев бетона проводом ПНСВ
      3. Электропрогрев опалубки
      4. Подогрев индукционным методом
      5. Инфракрасным излучением

      Стоит отметить, что независимо от способа, электропрогрев бетона должен сопровождаться его утеплением или хотя бы созданием термоса вокруг объекта. В противном случае, равномерного прогрева может не получиться, а это не очень хорошо скажется на его конечной прочности.

      Прогрев бетона электродами – схема подключения

      Прогрев бетона электродами – самый распространенный метод электропрогрева в зимнее время. Это связано, в первую очередь, с простотой и дешевизной, потому что, в отдельных случаях, нет необходимости тратиться на нагревательные провода, дорогие трансформаторы и т.п.

      Принцип действия такого способа электропрогрева основывается на физических свойствах электрического тока, который при прохождении через материал выделяет определенное количество теплоты.

      В данном случае, проводимым материалом является сам бетон, другими словами, когда ток проходит через водосодержащий бетон, он в это время его нагревает.

      Внимание! Если бетонная конструкция содержит в себе арматурный каркас, не рекомендуется подавать на электроды напряжение более 127 В. В случае отсутствия металлического каркаса, можно использовать как 220 В, так и 380 В. Большее напряжение применять не рекомендуют.

      Существует несколько видов электродов для прогрева бетона в зимнее время:

      Электроды стержневые. Для их создания используется металлическая арматура d 8 – 12 мм. Такие стержни вставляются в бетон на небольшом расстоянии и подключаются к разным фазам, как на схеме. В случаях сложных конструкций, такие электроды для прогрева бетона будут незаменимы. Стеклопластиковая арматура для таких целей не подойдет, потому что она является диэлектриком.

      Электроды в виде пластин. Иногда их называют пластинчатыми электродами. Схема подключения такого подогрева очень проста – пластины располагаются на обоих противоположных внутренних сторонах опалубки и подключаются к разным фазам, а проходящий ток будет нагревать бетон. Вместо широких пластин иногда используют узкие полосы, принцип действия этих полос — такой же.

      Электроды струнные. Используются при заливке колонн, балок, столбов и похожих конструкций. Принцип действия все тот же, струны подключаются к разным фазам, тем самым нагревая бетон в зимнее время.

      Прогрев бетона электродами необходимо осуществлять только переменным током, так как постоянный ток, проходящий через воду, способствует ее электролизу. Другими словами — вода будет химически разлагаться, не осуществив своей основной функции в процессе твердения.

      Электропрогрев бетона проводом ПНСВ: технология и схема

      Если прогрев бетона электродами – один из самых дешевых вариантов электропрогрева в зимнее время, то, в свою очередь, прогрев проводом ПНСВ – один из самых эффективных.

      Это связано с тем, что в качестве нагревателя используется не сам бетон, а нагревательный провод ПНСВ, который выделяет тепло при прохождении через него тока. С помощью такого провода, намного проще добиться плавного повышения температуры бетона, да и вообще такой провод будет вести предсказуемо, что облегчит необходимое постепенное увеличение температуры в зимнее время.

      Стоит сказать о самом проводе ПНСВ (П – провод, Н – нагревательный, С — стальная жила, В — ПВХ изоляция). Бывает различного сечения 1.2, 2, 3. В зависимости от использованного сечения выбирается его количество на 1 метр кубический бетонной смеси.

      Технология электропрогрева бетона проводом ПНСВ, также, как и схема подключения, очень проста. Провод без натяжки пропускается вдоль арматурного каркаса, на нем же и крепится. Крепить необходимо так, чтобы при подаче бетона в траншею или опалубку не повредить его.

      При электропрогреве бетона проводом ПНСВ в зимнее время, его укладывают так, чтобы он не касался земли, опалубки, а также не выходил за пределы самого бетона. Длина используемого провода полностью зависит от его толщины, сопротивления, ожидаемой минусовой температуры, а подаваемое напряжение, с помощью специального трансформатора составляет, как правило, около 50 В.

      Так же существуют кабели, которые не предусматривают использование трансформатора. Их использование позволит немного сэкономить. Он очень удобен в использовании, но все же у обычного провода ПНСВ более широкие возможности для применения.

      Электропрогрев опалубки в зимнее время

      Этот способ электропрогрева подразумевает изготовление опалубки с заранее заложенными нагревательными элементами в ней, которые при нагреве будут отдавать так нужное бетону тепло. Напоминает прогрев бетона пластинчатыми электродами, только обогрев осуществляется не на внутренней стороне опалубки, а внутри нее, либо снаружи.

      Электропрогрев опалубки в зимнее время не так часто используется, учитывая сложность конструкции, тем более, что при заливки фундамента, например, опалубка соприкасается не со всей бетонной конструкцией. Таким образом, нагреваться будет лишь часть бетона.

      Индукционный и инфракрасный способы подогрева бетона

      Индукционный способ подогрева бетона используется крайне редко, да и то, в основном, в балках, ригелях, прогонах, из-за сложности его устройства.

      Основывается он на том, что обмотанный изолированный провод вокруг стального стержня арматуры, будет создавать индукцию и нагревать саму арматуру.

      Электропрогрев бетона в зимний период с помощью инфракрасных лучей основывается на способности таких лучей нагревать поверхность непрозрачных объектов, с последующей передачей тепла по всему объему. При использовании такого способа необходимо предусмотреть окутывание бетонной конструкции прозрачной пленкой, которая будет пропускать лучи сквозь себя, не давая теплу так быстро уходить.

      Достоинством такого способа является то, что не обязательно использование специальных трансформаторов. Недостаток – в том, что инфракрасное излучение не способно осуществить равномерный обогрев больших конструкций. Этот способ годится только для тонких конструкций.

      Не забывайте о том, что независимо от способа электропрогрева бетона в зимнее время, необходимо постоянно следить за его температурой, потому что слишком высокая (более 50 0 С) – так же опасна для него, как и слишком низкая. Скорость нагрева бетона, так же как скорость остывания, не должна превышать 10 0 С в час.

      голоса
      Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector