Urbos.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Процент армирования плиты перекрытия

Расчет процента армирования плиты перекрытия

Исходя из количества пролетов и характера крепления, балки и перекрытия из железобетона бывают: однопролетные и многопролетные, а также свободно лежащие, защемленные (как на одной, так и на нескольких опорах), консольные и неразрезные.

Профили и размеры

Лучшим вариантом для плит перекрытия является монолитная плита.

Такие перекрытия применяют отдельно или комплексно: в конструкции самого перекрытия или для фундамента. Перпендикулярный профиль монолитных железобетонных балок в основном имеет прямоугольную или тавровую форму. Существуют и другие виды, например, двутавровая, коробчатая, трапециевидная и др., но их не применяют, так как при выполнении армирования таких железобетонных балок сталкиваются как с техническими, так и с технологическими трудностями.

Расчет поперечного сечения перекладины (ее ширина) производится с учетом того обстоятельства, что она должна равняться 1/2-1/3 высоты самого профиля. А если быть более конкретными, то она должна составлять 10, 12, 15, 20, 22, 25 см и выше (все величины должны быть кратными 5). В том случае если конструкция тонкостенная, тогда толщина балки (ее ребра) составляет 1/5 от высоты сечения.

Перекладины, плиты и перекрытия из монолитного железобетона армируют вязаной и сварной арматурой, при этом используя как продольный, так и поперечный каркас. Для вязаных каркасов можно использовать и отогнутую арматуру. При этом если продольный каркас в балках имеет доведение до опоры не меньше двух стержней, то ее диаметр должен быть 10 мм и выше.

Если перекрытия часторебристые, тогда применяют рабочий каркас 8 мм, причем один стержень доводят до опоры.

Когда возводят вязаный каркас, а высота балок при этом составляет 40 см, тогда вместо ненапрягаемой арматуры используют 12 мм стержни. Если хотят сконструировать продольную арматуру, применяют стержни меньшего диаметра.

Кильсон и перемычки

Схема монтажа плиты перекрытия.

Когда кильсон изготовлен из легкого бетона, а каркас с запасом прочности 500 МПа, тогда можно произвести расчет диаметра стержня для продольной арматуры, величина которого составит от 16-32 мм, что зависит от использованного класса бетона. В случае если для изготовления кильсона используют ячеистый бетон (класс В10 и ниже), тогда, произведя расчет диаметра продольной арматуры, можно выяснить, что его величина должна составить до 1,6 см.

Учтите, что для перемычек используют стержни двух диаметров, при этом не учитываются конструктивные балки и плиты перекрытия. В первом ряду, при вязаном каркасе и в углах перпендикулярного профиля, а также в тех местах, где происходит перегиб хомутов, размещают арматуру большего диаметра.

Основа продольного каркаса (ненапрягаемого) располагается по сечению перекладины равномерно в три ряда. В последнем (третьем) ряду должно располагаться два и более стержня. В последующем ряду стержни нельзя располагать в просветах. При этом расстояние между отдельными стержнями арматуры не должно быть меньше большего диаметра стержня, а также меньше 2,5 см (нижняя арматура) и 3 см (верхняя).

В плитах нижнюю арматуру необходимо распределить и разместить равномерно (произведя соответствующий расчет), но для этого понадобится уложить больше двух рядов, при этом ее высота должна составить около 5 см. Если места мало, тогда в плитах разрешается размещать стержни попарно, без зазоров. Между стержнями периодического сечения расстояние равно номинальному диаметру, при этом не учитывают ребра и выступы.

Непосредственные расчеты

Схема анкеровки плиты перекрытия.

Если нижний каркас должен доходить до последних перекладин, то его заводят за опору на длину базовой анкеровки, расчет которой производят по формуле:

lo, an = Rsp Asp/(Rbond us), где
Rsp – рассчитываемое сопротивление долевого сечения арматуры растяжению;
Asp – номинальная площадь арматуры (установленной);
Rbond – сопротивление сцепления каркаса и бетона;
Us – периметр по профилю арматуры (по номинальному диаметру).

После того как производят расчет анкеровки, необходимо разобраться, какие хомуты и стержни употребить и как их разместить.

Например, некоторые стержни, которые необходимо довести до опоры, обрывают в пролете, а стержни вязаной арматуры иногда отгибаются, причем тогда, когда их количество больше двух и если они двухсрезные. А когда это четырехсрезные хомуты, их число не должно превышать четырех и их тоже можно отгибать на опоры и на плиты.

Монолитные плиты перекрытия частично или полностью опираются по контуру (периметру), а иногда свободно опираются или имеют защемления на опорах. В конструкциях чаще всего используют консольные перекрытия, которые опираются на одну кромку, или такие плиты, которые опираются на углы (безбалочное перекрытие). Какие из них употребить, зависит от расчета, который производится довольно легко. Для него понадобится:

  • Лист;
  • Карандаш;
  • Линейка;
  • Калькулятор;
  • Знание необходимых формул.

Плиты, как и балки, могут быть однопролетные – разрезные (шарнирные и с нешарнирным опиранием), неразрезные – консольные (многопролетные).

Действующие усилия

Схема преднапряженных плит.

Если в одном направлении на плиты и перекрытия действуют определенные усилия, которые малы по сравнению с усилиями, идущими с другого направления, тогда в конструкции используют балочные плиты. К таким плитам можно отнести: прямоугольные, плоские плиты (равномерно нагруженные), которые опираются на противоположные опоры, и те плиты, которые опираются по всему периметру или защемлены с трех-четырех сторон, а соотношение пролетов при этом больше граничного значения. Его определение в документах обозначается цифрами 2 или 3.

К плитам, работающим в обоих направлениях, относятся непрямоугольные плиты (круглые, кольцевидные и др.) и плиты для безбалочного перекрытия, которые опираются на обычные колонны и с капителями. Если пролет – 6-8 м, тогда монолитные перекрытия выполняют плоскими, при большем проеме – с капителями или межколонными перекладинами или стенами, как ребристыми, так и пустотными. Для пролета в 12-15 м используют ребристые, кессонные и пустотные перекрытия (монолитные), которые опираются на стены или перекладины с четырех сторон.

Армирование монолитной железобетонной плиты происходит вязаной арматурой и сварной сеткой (стандартной). Для того чтобы все это правильно сконструировать, необходимо произвести расчет. Процент армирования необходим для вычисления процента армирования поперечного профиля всей конструкции продольными стержнями арматуры.

Его можно рассчитать по формуле:

Процент армирования равен площади бетонного сечения, помноженного на 100% и разделенного на площадь поперечного профиля стержня.

Распространенными видами бетонного сечения являются геометрические фигуры и формы: прямоугольник, круг, сечение с отверстием и площадь, которая выделяется из фрагмента монолитного перекрытия.

Схема плиты перекрытия.

Расчет прямоугольной площади сечения армирования происходит по двум противоположным точкам (по диагонали). Расчет площади сечения армирования по контуру производят, выбрав определяемую площадь по контуру, и строят последовательно по угловым точкам. Расчет площади сечения армирования непосредственно по объекту производится, выбрав ограниченный замкнутый объект (круг, прямоугольник, эллипс и др.). Если производят расчет площади армирования формы с отверстием, тогда расчет производят в два этапа: с использованием армирования внутреннего и внешнего контура, которые строят по угловым точкам.

Допустим, нужно произвести расчет армирования прямоугольного, монолитного железобетонного перекрытия, которое имеет форму прямоугольника. Для этого необходимо отметить первую точку, которая находится в вершине одного из углов. Далее отмечается вторая точка и производится расчет площади бетона. Зная площадь арматуры, легко можно произвести расчет процента армирования монолитного перекрытия.
Если монолитные плиты имеют слабое армирование, тогда их несущая способность будет зависеть от качества бетона. В таких плитах разрушение происходит тогда, когда арматура достигает предела прочности (при растяжении) или текучести.

В таких плитах процент армирования не больше 0,5-0,75 %. В случае если прочность бетона уменьшается в два раза, несущая способность армированной (0,5%) плиты уменьшится с 90 до 82%. Расчет несущей способности плиты производят по определенной формуле, по которой произвели опыт с двумя видами плит:

  1. плита слабого армирования (процент составляет 0,07 – 0,09);
  2. плита среднего армирования (процент – 0,17-0,24).

Для плиты слабого армирования выяснилось, что при пределе текучести с дальнейшим упрочнением изгибающий момент оказался намного меньше, чем для плит среднего армирования. В конструкциях со стохастическими эксцентриситетами и с арматурой (продольной), равномерно расположенной по периметру сечения, процент армирования (минимальный) высчитывается от площади сечения (полной) и всегда равен двойному значению указанных величин.

В конструкциях предварительно напряженных учитывают усадочные, температурные и т. п. воздействия, не учитываемые при простом расчете процента. А объем арматуры вычисляют по условию, чтобы по мере образования трещин несущая способность перекрытия была на порядок больше его трещиностойкости

Для проверки минимального процента армирования используют ультразвуковые преобразователи, которые располагают на участках, у которых процент армирования меньше. Это делается для уменьшения какого-либо влияния металла арматуры на процесс измерения и результаты контроля.

Определение эффективных параметров армирования железобетонных конструкций

Леонид Скорук
К.т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Читать еще:  Фундамент плита плюсы и минусы

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1­й (прочность, устойчивость), так и по 2­й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).

При этом в действующих строительных нормах [1­3] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05­0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой­то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190­200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м 2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м 3 . При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

Фактор

Следствие

Инженерно­геологические условия строительной площадки

Тип фундамента (свайный, плитный, ленточный)

Шаг сетки несущих вертикальных элементов

Пролет плит, их толщина (жесткость)

Размеры сечения колонн/пилонов/стен

Удельный вес арматуры в бетоне

Класс бетона и арматуры

Расход арматуры в сечении

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15­20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5­10%).

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 2. Содержание арматуры в бетоне для разных типов зданий

Тип здания

Элемент здания

Расход, кг/м3

а) 22­этажное здание на сваях
(шаг колонн/пилонов 6,0 м)

Какой максимальный процент армирования?

Страница 1 из 3123>
sys81
Посмотреть профиль
Найти ещё сообщения от sys81

160 кг многовато что тохотя может она очень тонкая у тебя
у меня получалось максимум 120 стараюсь обычно держать 80-90 кг на куб

а 160 — это уже ближе к расходу арматуры в балках

а вообще надо считать на квадрат

engineer
Посмотреть профиль
Найти ещё сообщения от engineer

Суть не в том что многовато, а в том, что заказчик считает, что расход большой. ссылается на теже 120кг. Но обоснований нет. По максимальному проценту армирования плита проходит (менее 5%).
А по удельному расходу есть какие-нибудь требования?

И ещё один момент. Если смотреть здание в целом, то удельный расход арматуры на 1м3 бетона получается 110м3.

Цыфра 120кг на 1м3 принимается только для плит перекрытия или для здания в целом?

P.S. Я не считал эту плиту, делал конструктив по предоставленным расчётам. Запас там конечно большой. Но это не главное. Хотелось бы понять, как нормируется расход металла (кроме максимального и минимального процента армирования), или же есть какие рекомендации из нормативных документов по этому поводу.

sys81
Посмотреть профиль
Найти ещё сообщения от sys81

цифра 120 — это у заказчика
я стремлюсь как сказал по зданию к 80-90
это нигде не нормируется
а про максимальный процент — что ты на него ориентируешься? он ни о чем В ДАННОМ СЛУЧАЕ
а заказчик и прав и нет как всегда все относительно — просто сделаешь плиту толще — расход уменьшится — вот тебе выход а экономии никакой

в общем 120 а лучше 80-90 — это оптимальный расход по экономическим соображениям, 120 — для «тонких» конструкций

engineer
Посмотреть профиль
Найти ещё сообщения от engineer

Вот это уже что-то. Спасибо!

На этот показатель я могу ссылаться. И от него ооталкиваться. Поэтому и говорю про него.

Ещё мнения будут?

sys81
Посмотреть профиль
Найти ещё сообщения от sys81
На этот показатель я могу ссылаться. И от него ооталкиваться. Поэтому и говорю про него.

лучше бы ты ссылался на оптимальный процент заказчик был бы более рад

Какой минимальный процент армирования железобетонных конструкций?

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

Читать еще:  Фундаментная плита под гараж

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

Какой расход арматуры на 1 м3 бетона

Для правильного расчета расхода арматуры на 1 м 3 бетона необходимо соблюдать строительные нормы и требования по армированию железобетонных конструкций. Так как, для конструкций разного типа, процент содержания стальных стержней в железобетоне может существенно отличается.

Какие показатели влияют на расчет расхода

При расчете расхода арматуры для армирования железобетонных конструкций следует учесть:

  • Вид и тип строения. Нормы армирования для каждой конструкции свои, они регламентируются, ГОСТ и СНиП.
  • Марку бетона. Чем выше марка, тем больше у бетона показатель сопротивления сжатию и растяжению, данные характеристики учитываются при вычислениях.
  • Размер и вес строения. Чем больше масса постройки, следовательно, тем больше процент содержания стали в бетоне.
  • Класс арматуры. Показатели расчетного сопротивления на растяжение и сжатие у стержней более высокого класса выше.

Все вышеперечисленные характеристики учитываются при расчетах количества арматуры требуемого для армирования возводимой конструкции. От их величины зависит и объем требуемого материала на 1 м 3 бетона. Так как эти показатели для каждой конструкции свои, то и расход для них будет разный.

Как рассчитывается расход арматуры на куб бетона

Согласно СП 52-101-2003 конструкцию можно назвать железобетонной, если площадь сечения продольных стальных стержней равна минимум 0,1 %, от площади сечения бетона. Максимальный процент содержания стальных стержней в бетоне равен 5, в местах стыковки, например колонн, этот показатель может доходить до 10. Рекомендуемый диапазон, это 0,5-3 % арматуры, от площади сечения бетона.

Исходя из конструктивных требований СП 52-101-2003, норма расхода арматуры для армирования железобетонных конструкций, находится в пределах от 20 до 430 кг на 1 м 3 бетона.

Таблица расхода арматуры

В данной таблице, рассчитан вес арматуры, необходимый для армирования железобетонных конструкций, в зависимости её количества в процентах от площади сечения бетона.

Содержания арматуры, %Масса арматуры на 1 м 3 бетона, кг
0.17.85
0.539.25
178.5
1.5117.75
2157
2.5196.25
3235.5
3.5274.75
4314
4.5353.25
5392.5

Примеры расчета расхода арматуры

Как уже было сказано выше, количество стержней требуемых для армирования зависит от типа конструкции, ниже приведены примеры как проводить расчёты для них.

Ленточный фундамент

Рассчитаем количество арматуры на 1 м 3 бетона, необходимое для армирования ленточного фундамента – высота 1,2 м, ширина 0,4 м. Для продольного армирования используем стальные стержни диаметром 12 мм – 14 шт., для поперечного хомуты из прутов 8 мм – шаг 30 см, а также соединительные стержни с шагом 60 см.

Порядок выполнения расчета расхода по схеме приведенной выше:

  1. Считаем площадь сечения бетона: 120*40=4800 см 2 .
  2. Площадь сечения продольной арматуры: 14*1,131=15,834 см 2 .
  3. Находим процент содержания продольных стержней в бетоне: 15,834/4800*100=0,329875%, округляем 0,33 %.
  4. С помощью таблицы расхода переводим проценты в кг, для этого: 0,33/0,1*7,85=25,905 кг.
  5. Для изготовления одного хомута необходимо 3 м прута толщиной 8 мм (вес 1 метра 0,395 кг), всего на 1 м 3 фундамента уйдет 7 хомутов, а это: 7*0,395= 2,765 кг.
  6. Также понадобятся 4 соединительных стержня длиной 50 см, и диаметром 8мм, всего: 4*0,5*0,395=0,79 кг.
  7. Получаем на 1 м 3 бетона ленточного фундамента при таком армировании, всего уйдет: 25,905+2,765+0,79=29,46 кг арматуры.

Так, рассчитав требуемый объем бетона и количество стержней на 1 м 3 , можно узнать, сколько тонн стали необходимо для армирования всего фундамента. Но также следует учесть количество и размер нахлестов арматуры, и подсчитать количество дополнительных элементов по усилению углов и других элементов.

Монолитная плита перекрытия

Рассчитаем на примере армирования плиты перекрытия толщиной 20 см, так как это самый распространённый размер. Шаг армирующей сетки 200 на 200 мм диаметр стержня 10 мм, усиления 14 мм – шаг 200 мм.

Порядок расчета расхода на 1 м 3 перекрытия по схеме:

  1. На 1 м 2 плиты уходит 20 м арматуры для вязки верхнего и нижнего слоя сетки.
  2. 1 м 3 бетона занимает площадь 5 м 2 , следовательно: 5*20=100 метров – расход стержня для вязки сетки.
  3. Вес метра арматуры 10 мм – 0,617 кг. Получаем, 100*0,617=61,7 кг, расход продольных стержней для устройства сетки.
  4. На дополнительные усиления, понадобится около 50 метров стержня диаметром 14 мм, всего: 50*1,21=60,5 кг.
  5. Дополнительные элементы плиты (пространственные каркасы, «П» образные элементы), необходимо около 20 м стальных прутов 10 мм, всего: 20*0,617=12,34 кг.
  6. Всего расход: 61,7+60,5+12,34= 134,54 кг арматуры на 1 м 3 бетона монолитной плиты перекрытия.

Таким образом, можно произвести расчеты для перекрытий различных конструкций. Но при этом следует ещё учесть расход на стыки, усиления в зоне продавливания, и другие дополнительные элементы, в зависимости от формы и особенностей строения.

Железобетонная колонна

Рассчитаем расход для армирования колонны 300 на 300 мм. Продольная арматура класса А500С диаметром 16 мм – 4 шт, поперечная А240 – 8 мм. Порядок расчета:

  1. Считаем размер площади сечения колонны: 30*30=900 см 2 .
  2. Площадь сечения арматуры равна: 4*2,01=8,04 см 2 .
  3. Рассчитываем процент содержания продольных прутов в бетоне: 8,04/900*100= 0,893 %.
  4. Переводим проценты в кг, для этого: 0,893/0,1*7,85= 70,1 кг.
  5. При таком сечении 1 м 3 бетона в длину это 11 метров колонны.
  6. На 11 метр колонны при шаге 25 см уйдет около 45 хомутов.
  7. На 1 хомут уходит 1 метр стержня диаметром 8 мм весом 0,395 кг, значит всего на куб: 45*0,395=17,775 кг.
  8. Всего на куб бетона колонны уйдет, 70,1+17,775=87,875 кг арматуры.

Все расчеты по расходу стали являются теоретическими, к каждому случаю следует подходить индивидуально, учитывать все действующие нагрузки на конструкцию, так как от этого зависит минимальный процент армирования, а от него, то, сколько арматуры уйдет на 1 м 3 бетона. Если остались вопросы, задавайте в комментариях, будем рады помочь.

Расчет процента армирования плиты перекрытия

Исходя из количества пролетов и характера крепления, балки и перекрытия из железобетона бывают: однопролетные и многопролетные, а также свободно лежащие, защемленные (как на одной, так и на нескольких опорах), консольные и неразрезные.

Шаг 1. Составляем схему перекрытия

Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.

И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.

Кильсон и перемычки

Схема монтажа плиты перекрытия.

Когда кильсон изготовлен из легкого бетона, а каркас с запасом прочности 500 МПа, тогда можно произвести расчет диаметра стержня для продольной арматуры, величина которого составит от 16-32 мм, что зависит от использованного класса бетона. В случае если для изготовления кильсона используют ячеистый бетон (класс В10 и ниже), тогда, произведя расчет диаметра продольной арматуры, можно выяснить, что его величина должна составить до 1,6 см.

Читать еще:  Подбетонка под фундаментную плиту

Учтите, что для перемычек используют стержни двух диаметров, при этом не учитываются конструктивные балки и плиты перекрытия. В первом ряду, при вязаном каркасе и в углах перпендикулярного профиля, а также в тех местах, где происходит перегиб хомутов, размещают арматуру большего диаметра.

Основа продольного каркаса (ненапрягаемого) располагается по сечению перекладины равномерно в три ряда. В последнем (третьем) ряду должно располагаться два и более стержня. В последующем ряду стержни нельзя располагать в просветах. При этом расстояние между отдельными стержнями арматуры не должно быть меньше большего диаметра стержня, а также меньше 2,5 см (нижняя арматура) и 3 см (верхняя).

В плитах нижнюю арматуру необходимо распределить и разместить равномерно (произведя соответствующий расчет), но для этого понадобится уложить больше двух рядов, при этом ее высота должна составить около 5 см. Если места мало, тогда в плитах разрешается размещать стержни попарно, без зазоров. Между стержнями периодического сечения расстояние равно номинальному диаметру, при этом не учитывают ребра и выступы.

Достоинства и недостатки монолитного перекрытия

Преимущества, благодаря которым монолитное перекрытие пользуется большой популярностью в строительстве.

  1. Надёжность. Обладает прочностью и несущей способностью, способной выдерживать механические нагрузки, воздействие температур, влаги, с которыми не могут справиться другие виды перекрытий.
  2. Форма плиты может быть любой!
  3. Целостность конструкции.
  4. Распределение нагрузки.
  5. Пожаробезопасность. Обладает высокой огнестойкостью.
  6. Срок службы.
  7. Самостоятельное строительство.

К недостаткам строительства монолитного перекрытия можно отнести.

  1. Стоимость.
  2. Трудоёмкость строительных работ.
  3. Время строительства.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Расчет безбалочного перекрытия

Перекрытие этого типа представляет из себя сплошную плиту. Опорой для нее служат колонны, которые могут иметь капители. Последние необходимы тогда, когда для создания требуемой жесткости прибегают к уменьшению расчетного пролета.

Экспериментально было установлено, что для безбалочной плиты опасными нагрузками можно считать сплошную, оказывающую давление на всю площадь и полосовую, распределенную через весь пролет.

Перекрытие по профлисту

В этом случае рекомендуется взять профилированный лист марки Н-60 или Н-75. Они обладают хорошей несущей способностью. Материал монтируется так, чтобы при заливке образовались ребра, обращенные вниз. Далее проектируется монолитная плита перекрытия, армирование состоит из двух частей:

  • рабочие стержни в ребрах;
  • сетка в верхней части.

Армирование плиты перекрытия по профлисту

Наиболее распространенный вариант, когда в ребрах устанавливают по одному стержню диаметром 12 или 14 мм. Для монтажа прутов подойдут инвентарные пластиковые фиксаторы. Если нужно перекрыть большой пролет, в ребро может устанавливаться каркас из двух стержней, которые связаны между собой вертикальным хомутом.

В верхней части плиты обычно укладывается противоусадочная сетка. Для ее изготовления используют элементы диаметром 5 мм. Размеры ячейки принимаются 100х100 мм.

Шаг 5. Подбираем сечение арматуры

Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:

Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.

Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:

Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.

Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.

Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:

Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.

Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве!

Шаг 4. Подбираем класс бетона

Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.

Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения других различных технологических факторов, даже так называемой активности цемента.

При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.

Сплошная плита

Толщина перекрытия чаще всего принимается равной 200 мм. Армирующий каркас в этом случае включает в себя две сетки, расположенные друг над другом. Такие сетки нужно связать из стержней диаметром 10 мм. В середине пролета устанавливают дополнительные пруты усиливающей арматуры в нижней части. Длина такого элемента назначается 400 мм или более. Шаг дополнительных прутов принимают таким же, как шаг основных.

В местах опирания нужно тоже предусмотреть дополнительное армирование. Но располагают его в верхней части. Также по торцам плиты нужны П-образные хомуты, такие же как в фундаментной плите.

Пример армирования плиты перекрытия

Расчет армирования плиты перекрытия по весу для каждого диаметра стоит выполнить до закупки материала. Это позволит избежать перерасхода средств. К полученной цифре прибавляют запас на неучтенные расходы, примерно 5%.

Вязка арматуры монолитной плиты

Для соединения элементов каркаса между собой пользуются двумя способами: сварка и связывание. Лучше вязать арматуру для монолитной плиты, поскольку сварка в условиях строительной площадки может привести к ослаблению конструкции.

Для выполнения работ используют отожженную проволоку, диаметром от 1 до 1,4 мм. Длину заготовок обычно принимают равной 20 см. Существует два типа инструмента для вязания каркасов:

  • крючок;
  • пистолет.

Второй вариант существенно ускорят процесс, снижает трудоемкость. Но для возведения дома своими руками большую популярность получил крючок. Для выполнения задачи рекомендуется заранее подготовить специальный шаблон по типу верстака. В качестве заготовки используют деревянную доску шириной от 30 до 50 мм и длинной до 3 м. На ней делают отверстия и углубления, которые соответствуют необходимому расположению арматурных прутов.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector